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Abstract We review some of the recent approaches and advances made by physi-
cists in some selected problems in economics. This rapidly growing interdisciplinary
field is now popularly called “Econophysics”. These approaches, mainly originat-
ing from statistical physics, have not been free of drawbacks and criticisms, but we
intend to discuss these advancements and highlight some of the promising aspects
of this research. We hope the readers will be able to judge the positive impact
that have come out of these efforts, further improve the methods and the results,
remove the shortcomings and eventually strengthen the field with their inputs.
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1 Background and motivation

Physics is a hardcore observational science; it does not accept theories or expla-
nations unless they are validated by experimental procedures as well. It is not
always necessary that the developments in theoretical and experimental physics
make simultaneous progress; most often one leads the other. However, the success
of either branch depends on the parallel developments in the other; there needs
to be an agreement between the theoretical predictions or explanations and the
experimental observations or results. The scenario may be quite different in the
social sciences like economics. Sometimes the after-effects of some economic poli-
cies or theoretical models can be realized only much later; at times, they cannot
even be validated by the lack of empirical data. Furthermore, the social scientists
do not often agree with each other on the background assumptions, predictions
and success of some theoretical model, and they systematically debate upon the
counter views and interpretations. On many fronts, the outcomes of their theo-
ries are later found to deviate from real-life observations, because the assumptions
behind were simplified and non-realistic, though mathematically consistent. Occa-
sionally, in order to reproduce or construct some very realistic features, the social
scientists have proposed models with a large number of parameters and variables,
which render them mathematically intractable and too complicated.

The econophysicists, among many other things, have advocated that one should
rely primarily on the empirical observations in order to construct models and
validate them. Thus, a major part of the efforts in econophysics have been the
study of empirical data and financial time series analyses. Often, the empirics
have guided the theoreticians in designing more realistic and practical models.
It has also been found that very simple yet elegant models or mechanisms are
able to reproduce much of the features of the observed data. In many cases, these
(idealized) models could serve as a test-bed for many complex properties, and
the models could be further improved to fit more realistic situations. Recently,
due to the advent of very powerful and cheap computation, many multi-agent
models could be simulated and tested, without having to wait for a long time
to validate the predictions of the models. The branch of statistical physics has
successfully combined the principles of classical and quantum dynamics, theory of
probability and law of large numbers. Interestingly, very simple models (with a
very few parameters and minimal assumptions) inspired from statistical physics,
have been easily adapted in recent occasions, to gain deeper understanding and
insights of many complex economic problems. There have been huge number of
books [1–3], monographs [4–7], edited volumes [8–16], reviews [17–19] and journal
articles on this field.

In this article, we have chosen to review certain representative efforts or ap-
proaches of the econophysicists; it is certainly not exhaustive by any means. They
should only serve the purpose of illustrating or reflecting the statements made
in the prededing paragraphs. Neither do we claim that the efforts are the only
ones– correct and free from error; nor do we say that they should replace the tools
and techniques of mainstream economics. We only modestly suggest that these
interdisciplinary approaches may also prove to very effective, and possibly could
compliment and strengthen the existing ones. There has been a huge surge of re-
search activities in this field, and the references can only be too many to be possibly
included here. Thus, we try to point out in this article, some general books, impor-
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tant reviews and key references, which further contain more details and references
of original research in this field. Our goal is to only highlight the positive aspects
and important outcomes of these research efforts, in order to arouse the interests
of open minded economists and social scientists. We remind the readers that these
approaches have their fare share of drawbacks and criticisms. We encourage the
readers to go through the referred literature carefully, and then contribute to this
new interdisciplinary field so that this field may develop further.

In the following sections, we will present some distinct and disjoint topics,
each with sufficiently short introductions or motivations, few important results
and summaries. These topics do not comprise the whole field of econophysics, and
give only partial (and perhaps biased) glimpses of the research conducted over the
years by the authors and their collaborators. The order of discussions of the topics
do not reflect in any manner either their chronology or their importance.

2 Income and wealth distributions: Kinetic exchange models

2.1 Introduction

It was the Swiss physicist and mathematician, Daniel Bernoulli, who published
Hydrodynamica in 1738, that eventually led to the formulation of the “kinetic the-
ory of gases”1. Bernoulli had proposed for the first time, that (i) gases consist of
a large number of molecules moving in all directions, (ii) their impact on a sur-
face causes the gas pressure, and (iii) heat is simply the “kinetic energy of their
motion”. Then it was in 1859 when the Scottish physicist, James Clerk Maxwell,
formulated the “Maxwell distribution of molecular velocities”, after reading a pa-
per on the diffusion of molecules by Rudolf Clausius. This may be considered as
the first statistical law in physics. Five years later, an Austrian physicist, Ludwig
Eduard Boltzmann, was inspired by Maxwell’s paper and began developing the
subject further. Thus were laid the foundations of “statistical thermodynamics”2

by greats like Maxwell, Boltzmann, Clausius, and developed further by people like
Max Planck and Josiah Willard Gibbs. They started applying probability theory,
which contains the mathematical tools for dealing with very large numbers, to the
study of the thermodynamic behaviour of physical systems composed of a large
number of particles, giving rise to the field of “statistical mechanics”3. The subject
of statistical mechanics provides a theoretical framework for relating the micro-
scopic properties of individual atoms and molecules to the macroscopic or “bulk”
properties of materials that we observe in our everyday life. It can be applied
to various systems with an inherently stochastic nature in the fields of physics,
chemistry, biology, and even economics and sociology. In fact, the application of

1 Less popular is the fact that Daniel Bernoulli was also the author of Specimen theoriae
novae de mensura sortis (Exposition of a New Theory on the Measurement of Risk), published
in 1738.

2 The term was coined by the American physical chemist J. Willard Gibbs, and appeared
in his book title published in 1902.

3 The term was first used by the Scottish physicist, James C. Maxwell, in 1871.
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statistical physics ideas and tools in modeling economics and sociology, have led
to the interdisciplinary fields of “Econophysics”4 and “Sociophysics”5.

A natural question that may rise in one’s mind is: “How can such a physical

theory like statistical mechanics, which deals with particles, be applied to an economic

system, composed of (human) agents?” Well, that is what we set to describe next,
while dealing with the problem of income and wealth distributions in the soci-
ety6. Physicists have come up with some very elegant and simple kinetic exchange
models in recent times to the problem of economic inequality, based on the sim-
ple philosophy: A single molecule of gas does not have a temperature (T ), or a
pressure (p). It is simply a point-like particle that moves at a particular speed,
depending on how much energy it has, governed by the statistical law of Maxwell-
Boltzmann distribution of molecular speeds. However, when there are of the order
of 1023 or so molecules in an isolated and sealed box of volume V , their collective
behaviour can be captured by the equation of state: pV = RT , where R is the gas
constant; and even though each individual particle is moving at random, one can
predict with extraordinary accuracy how many of them will, for example, hit the
walls of the box at any one time. Similarly, the belief of the physicists is that the
economy can be described in terms of simple observables. An individual person
is neither an economy, nor has any of the characteristics of the entire economy.
However, a million such persons acting individually creates the economy, and may
be described by some rules that perhaps allow an economy to be predicted, just
as the equation of state mathematically describes pressure and temperature, and
predicts the aggregate behaviour of atoms. Also, the standard economic theory
would like to consider that the activities of individual agents are driven by the
utility maximization principle. The alternate picture proposed by physicists is that
the agents can be simply viewed as gaseous particles exchanging “money”, in the
place of energy, and trades as money (energy) conserving two-body scatterings,
as in the entropy maximization based kinetic theory of gases [21]. This qualitative
analogy between the two maximization principles seems to be quite old – both
economists and natural scientists had already noted it earlier in many contexts,
but this equivalence has gained firmer ground only recently.

Truly, it would be difficult to find any society or country where income or wealth
is equally (or fairly) distributed amongst its people. Socio-economic inequality is
not just limited to the modern times; it has been a persistent phenomenon and a
constant source of irritation to most, since antiquity. It is one of the most fiercely
debated subjects in economics, and the economists and philosophers have spent
much time on the normative aspects of this issue ([20,22–24]). The direct and
indirect effects of inequality on the society have also been studied extensively,
particularly, the effects of inequality on the growth of the economy ([25–28]) and
on the econo-political scenario ([29–32]). There are several non-trivial issues and
related open questions: How are income and wealth distributed? What are the forms

4 The term was coined by the American physicist, H. Eugene Stanley, in a conference on
statistical physics in Kolkata (erstwhile Calcutta) in 1995, and first appeared in its proceedings
published in the journal Physica A (1996).

5 The term was first used by the French physicist, S. Galam, and appeared in an article
published in 1982.

6 This part contains some text overlapping with the recent monograph by Chakrabarti et
al. (2013) [7].
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of the distributions? Are they universal, or do they depend upon specific conditions of

a country?

Such questions have indeed intrigued many great personalities in the past: Vil-
fredo Pareto, more than a century ago, made extensive studies in Europe and found
that wealth distribution follows a power law tail for the richer section of the soci-
ety ([33]), known now as the Pareto law. Separately, Roger Gibrat worked on the
same problem and he proposed a “law of proportionate effect” ([34]). Much later,
Champernowne also considered this problem systematically and came up with a
probabilistic theory to justify Pareto’s claim ([35,36]). Subsequently, it was found
in numerous studies that the distributions of income and wealth indeed possess
some globally stable and robust features (see, e.g., [17] for a detailed review). In
general, the bulk of the distribution of both income and wealth seems to fit both
the log-normal and the Gamma distributions, reasonably well. Economists usually
prefer the log-normal distribution ([37,38]), whereas statisticians ([39]) and more
recently, physicists ([40,41,17]) tend to rely more on alternate forms such as the
Gamma distribution (for the probability density) or Gibbs/ exponential distribu-
tion (for the cumulative distribution). There is considerably more consensus on
the upper end of the distribution, that is the tail of the distribution – described
by a power law as was found by Pareto.

These observed regularities in the income distribution may thus indicate a
“natural” law of economics. The distribution of income P (x) is defined as follows:
P (x)dx is the probability that in the “equilibrium” or “steady state” of the sys-
tem7, a randomly chosen person would be found to have income between x and
x+ dx. Detailed empirical analyses of the income distribution so far indicate

P (x) ∼ xn exp(−x/T ), for x < xc, (1)

and
P (x) ∼ x−α−1, for x ≥ xc, (2)

where n and α are two exponents, and T denotes a scaling factor. The latter
exponent α is called the Pareto exponent and its value ranges between 1 and 3 (see,
e.g., [42,43]). A historical account of Pareto’s data and that from recent sources can
be found in [44]. The crossover point xc is extracted from the numerical fittings of
the initial Gamma distribution form to the eventual power law tail. One often fits
the region below xc to a log-normal form: logP (x) = const−(log x)2. As mentioned
before, although this form is often preferred by economists, the statisticians and
physicists think that the Gamma distribution form fits better with the data (see
[17], [39] and [45]). Fig. 1 shows schematically the features of the cumulative income
or wealth distribution.

Most of the empirical analyses, especially with recent income data, have been
extensively reviewed, e.g., in the chapter of book by Chakrabarti et al. [7]. It may
be mentioned that compared to the empirical work done on income distribution,
relatively fewer studies have looked at the distribution of wealth, which consist of
the net value of assets (financial holdings and/or tangible items) owned at a given
instant. The lack of an easily available data source for measuring wealth, analogous
to income tax returns for measuring income, means that one has to resort to

7 To keep things simple, we will often be using the terms “equilibrium” or “steady state”
interchangeably; strictly speaking, for systems that are “non-ergodic”, one can only write
“steady state”.
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Fig. 1 When one plots the cumulative wealth (income) distribution against the wealth (in-
come), almost 90 − 95% of the population fits the Gibbs distribution, or often fitted also to
log-normal form (Gibrat law) – indicated by the shaded region in the distribution; for the
rest (very rich) 5 − 10% of the population in any country, the number density falls off with
their wealth (income) much slowly, following a power law (Pareto law). It is found that about
40 − 60% of the total wealth of any economy is possessed by 5 − 10% of the people in the
Pareto tail. Taken from Chakrabarti et al. (2013) [7].

indirect methods. Again, one notes that the general feature observed in the limited
empirical study of wealth distribution, is that of a power law behavior for the
wealthiest 5-10 % of the population, and exponential or log-normal distribution
for the rest of the population. The Pareto exponent as measured from the wealth
distribution is always found to be lower than that for the income distribution,
which is consistent with the general observation that, in market economies, wealth
is much more unequally distributed than income ([46]). Interestingly, instead of
focussing on the income of individuals when one shifts attention to the income of
companies, one still observes the power law tail. A study of the income distribution
of Japanese firms ([42]; see also [6]) concluded that it follows a power law (with
exponent value near unity, which is also often referred to as the Zipf’s law). Similar
observation has been reported for the income distribution of companies in the US
([47]). Such strikingly robust features of the distribution P (x), in income or wealth,
seem to be well-established from the analyses of the enormous amount of data
available today. The important question is – if inequality is universal (as some of its

gross features, studied by Pareto, Gibrat and others, indicate), then what is the reason

for such universality? Is it plausible that this only reflects a basic natural law, with

simple physical explanation? Many econophysicists actually believe so. According
to them, the regular patterns observed in the income (and wealth) distribution
are indeed indicative of a natural law for the statistical properties of a many-body
dynamical system representing the entire set of economic interactions in a society,
analogous to those previously derived for gases and liquids.

The class of kinetic exchange models ([56,68,57–60]) are simple microeconomic
models with a large number of “agents” and the “asset” transfer equations among
the agents due to “trading” in such an economy, closely resemble the process of
“energy” transfer due to “collisions” among “particles” like those in a thermody-
namic system of ideal gas. In these models, the system is assumed to be made



Econophysics 7

Fig. 2 The kinetic exchange models prescribe a microscopic interaction between two units
analogously to a kinetic model of gas in which, during an elastic collision, two generic particles
j and k exchange an energy amount ∆x, as in (3). Taken from Chakrabarti et al. (2013) [7].

up of N agents with assets {xi ≥ 0} (i = 1, 2, . . . , N). At every trade, an agent
j exchanges a part ∆x with another agent k chosen randomly. The total asset
X =

P

i xi is constant, as well as the average asset 〈x〉 = X/N . After the exchange
the new values x′j and x′k are (x′j , x

′
k ≥ 0)

x′j = xj −∆x ,

x′k = xk +∆x . (3)

The form of the function ∆x = ∆x(xj , xk) defines the underlying dynamics of
the model. Fig. 2, shows the schematic picture that captures the essence of these
models.

Among the first examples of kinetic exchange models of markets proposed by
social scientists, we must mention the works of E. Bennati [52–54], an economist,
and those of John Angle [48–51], a sociologist. Independently, physicists also had
made several studies. The first kind of models both with multiplicative and additive
exchanges, were proposed by Ispolatov et al. [55].

The steady state distribution for a system with pure random asset exchange
is an exponential one, as was found by Gibbs a hundred years ago (see e.g., [41,
17,68]). However, the introduction of “saving propensity” ([56]) brought forth
the Gamma-like feature of the distribution P (x) and such a random exchange
model with uniform saving propensity for all agents was subsequently shown to be
equivalent to a commodity clearing market where each agent maximizes his/her
own utility ([61]). A further modification of the model produces ([58]) a power
law for the upper or tail end of the distribution of money, as has been found
empirically. These are explained in the following sub-section.

2.2 Model with uniform savings

In any trading, savings come naturally [46]. A saving propensity factor λ was
introduced in the random exchange model [56], where each trader at time t saves
a fraction λ of its money xi(t) and trades randomly with the rest:

xi(t+ 1) = λxi(t) + εij [(1 − λ)(xi(t) + xj(t))] , (4)

xj(t+ 1) = λxj(t) + (1 − εij) [(1 − λ)(xi(t) + xj(t))] , (5)
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where

∆x = (1 − λ)[εij{xi(t) + xj(t)} − xi(t)], (6)

where εij being a random fraction. This randomness reflects the stochastic nature
of the trading. By definition, λ is a proper fraction, i.e., 0 ≤ λ ≤ 1.

Interestingly, in this model, the market (non-interacting at λ = 0 and 1) be-
comes ‘interacting’ for any other non-vanishing λ: For fixed λ (uniform for all
agents), the steady state distribution P (x) of money is exponentially decaying on
both sides with the most-probable money per agent shifting away from x = 0 (for
λ = 0) to X/N as λ→ 1 (Fig. 3). Here, the self-organizing feature of the market8 ,
induced by sheer self-interest of saving by each agent without any global perspec-
tive, is quite significant as the fraction of paupers decrease with saving fraction
λ and most people end up with some finite fraction of the average money in the
market – for λ → 1, the economy is ideally ‘socialist’, and this is achieved just
with people’s self-interest of saving. Although this fixed saving propensity does
not give yet the Pareto-like power-law distribution, the Markovian nature of the
scattering or trading processes is effectively lost. Indirectly through λ, the agents
get to know (start interacting with) each other and the system co-operatively
self-organizes towards a most-probable distribution (xp 6= 0) (see Fig. 3).

Based on numerical results, it has been claimed (through heuristic arguments)
that the distribution is a close approximate form of the Gamma distribution [63]:

P (x) =
nn

Γ (n)
xn−1 exp(−nx) (7)

where Γ (n) is the Gamma function whose argument n is related to the savings
factor λ as:

n = 1 +
3λ

1 − λ
. (8)

This result has also been supported by numerical results in [64]. However, later
studies [65,66] analyzed the moments, and found that moments up to the third
order agree with those obtained from the form of the Eq. (8), and discrepancies
start from fourth order onwards. Hence, the actual form of the distribution for
this model is still an open question.

2.3 Model with distributed savings

In a real society or economy, the interest of saving varies from person to person,
which implies that λ is a very inhomogeneous parameter. To reproduce this sit-
uation, one moved a step closer to the real situation where saving factor λ was
widely distributed within the population [58,57,59]. The evolution of money in
such a trading can be written as:

xi(t+ 1) = λixi(t) + εij [(1 − λi)xi(t) + (1 − λj)xj(t)] , (9)

xj(t+ 1) = λjxj(t) + (1 − εij) [(1 − λi)xi(t) + (1 − λj)xj(t)] . (10)

8 Self-organization also occurs in other market models when there is restriction in the com-
modity market [62].
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Fig. 3 Steady state money distribution P (x) vs. x for: (TOP) The model with uniform
savings. The data shown are for different values of λ: 0, 0.1, 0.6, 0.9 for a system size N = 100.
All data sets shown are for average money per agent X/N = 1. Taken from [41]. (BOTTOM)
The distributed λ model with 0 ≤ λ < 1 for a system of N = 1000 agents. The x−2 is a guide
to the observed power-law, with 1 + α = 2. Again, the average money per agent X/N = 1.
Taken from [41].

The trading rules are similar as before, except that

∆x = εij(1 − λj)xj(t) − (1 − λi)(1 − εij)xi(t), (11)

where λi and λj are the saving propensities of agents i and j. In this model,
the agents have fixed (over time) saving propensities, distributed independently,
randomly and uniformly, within an interval 0 to 1. A particular agent i saves a
random fraction λi (0 ≤ λi < 1) and this λi value is quenched for each agent, i.e.,
λi does not change with time t.

Starting with an arbitrary initial (uniform or random) distribution of money
among the agents, the market evolves with the trading. At each time, two agents
are randomly selected and the money exchange among them occurs, following
the above mentioned scheme. One checks for the steady state, by looking at the



10 Anirban Chakraborti et al.

stability of the money distribution in successive Monte Carlo steps t (one Monte
Carlo time step is defined as N pairwise exchanges). Eventually, after a typical
relaxation time the money distribution becomes stationary. This relaxation time
is dependent on system size N and the distribution of λ (e.g, ∼ 106 for N =
1000 and uniformly distributed λ). After this, one averages the money distribution
over ∼ 103 time steps. Finally, one takes the configurational average over ∼ 105

realizations of the λ distribution to get the money distribution P (x). Interestingly,
this has a strict power-law decay, and the decay fits to Pareto law (Eq. 2) with
α = 1.01 ± 0.02 (Fig. 3). One may note, for finite size N of the market, the
distribution has a narrow initial growth up to a most-probable value xp after
which it falls off with a power-law tail for several decades. This Pareto law (with
α ' 1) covers almost the entire range in money x of the distribution P (x) in the
limit N → ∞. This power law is extremely robust, in the sense that apart from
the uniform λ distribution used in these simulations in Fig. 3, this decay can also
be reproduced for a distribution

ρ(λ) ∼ |λ0 − λ|α, λ0 6= 1, 0 < λ < 1, (12)

of quenched λ values among the agents, for all α > 0.

2.4 Summary and discussions

In summary, viewing the economy as a “thermodynamic” system ([67–70]), one
can identify the income distribution with the distribution of energy among the
particles in a gas. Several attempts by social scientists (see e.g., [52–54,48–51])
also provide impetus to this interdisciplinary approach. In particular, the class of
kinetic exchange models ([56,68,57–59]) have provided a simple mechanism for
understanding the unequal accumulation of assets. While being simple from the
perspective of economics, they have the benefit of gripping a key factor – savings

– in socio-economic interactions, that results in very different societies converging
to similar forms of unequal distribution. Interestingly, the economic inequality is
a natural outcome of this framework of stochastic kinetics of trading processes
in the market, independent of any exogenous factors. Thus, the kinetic exchange
models demonstrate how inequality may arise naturally. They also indicate how
its effects may be partially reduced by modifying the saving habits.

Several analytical aspects of this class of models have been studied (see e.g,
[71–73,5,66]). It is noteworthy that presently this is the only known class of mod-
els which, starting from microeconomics of utility maximization and solving for
the resultant dynamical equations in the line of rigorously established statistical
physics, can quite reliably reproduce the major empirical features of income and
wealth distributions in economies.

These developments have, of course, not gone without criticism (see e.g., [74–
76]), and subsequent rebuttal ([44]). In view of the embarrassing failure of main
stream economic schools to anticipate or correctly analyses the recent economic
crisis, there have been some recent interests by the main stream economic schools
to revisit such physically motivated models of the market dynamics and their
solutions (see, e.g., [77]).
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3 Market mechanism: Agent-based models

3.1 Introduction

In this section, we will discuss some games on agent-based model [78,79,3] which
may be considered as toy models of the market mechanism. One of the most famous
games proposed related to this issue, renowned also for its simplicity, is the El Farol
bar problem [80]. Brian Arthur introduced in 1994 the game to illustrate the idea
of ‘inductive reasoning’. In Santa Fe town, there was a bar named El Farol Bar,
where every Thursday a musical programme was organized. People went to the
bar for entertainment. But when the bar was too crowded then the bar was not
enjoyable. Based on this observation, he proposed the repetitive game model where
it was suggested the people in the bar would be enjoying only if less than, say, 60%
of capacity was occupied. Assuming that all agents were not interacting with each
other, and taking their decisions parallelly, he modeled the problem considering
only previous attendance history. He defined a strategy space based on previous
history and argued that the attendances of the bar can be around 60% of the total
number people. The solution therefore is completely based on inductive reasoning,
i.e., people learned strategies from previous history and corrected from past errors.

Later a variant of the El Farol bar problem was introduced by Challet and
Zhang, was named as Minority Game [79,81–84,18]. In the Minority Game prob-
lem, two restaurants are considered (to allow for symmetric choices). The agents
on the less crowded side will be the winners (payoff 1 for each) and agents in the
more crowded side will be loser (payoff 0 for each). People again learn from the past
history and change their strategies to minimize their error/loss. The steady state
fluctuation associated with the population is important and need to be minimized
for efficient ‘reasoning’ or learning by the players. Many methods of collective
learning have been proposed and studied for this game to reduce fluctuation in
this problem and also the convergence time.

In the next part of this section we will discuss another variation of the (two
choices) El Farol Bar problem, called Kolkata Paise Restaurant problem [85–87].
In this problem there are many choices (of restaurants) and many agents. It is
again a repetitive game. Every restaurant can serve only one agent each day and
the price of a meal is same for all restaurants. The agents here also do not interact
with each other and everyone wants to choose an unique restaurant each day. If
more than one agent arrive at a restaurant then one of them will be randomly
chosen by the restaurant and will be served; the rest will not get any meal for
that day. The utilization fraction is defined as the ratio of the average number of
agents getting dinner in a day to the total number of the restaurants. The main
aim of this problem is finding out a strategy which will give a maximum utilization
taking the smaller time to converge to the solution.

3.2 El Farol Bar problem

Before the El Farol Bar problem was introduced, the economists had mainly mod-
eled the problems based on deductive rationality. Although it was useful to gen-
erate a theoretical problem, but it was observed that deductive rationality breaks
down under some complications [80]. It was pointed out that inductive reasoning



12 Anirban Chakraborti et al.

was needed to model the problems in a more realistic way. It was argued that
in our society, we may make our decisions based on inductive reasoning and not
based on deductive rationality. The inductive reasoning gives good sense as an
intellectual process and it is very easy to model.

Historically, the El Farol Bar problem was introduced as follows: In Santa Fe,
New Mexico, there was a bar and every Thursday night, a finite number of people
went to the bar. But as the capacity of the bar was finite, it was no fun to go
there if it was too crowded and people therefore decided to go or not depending
on their personal past experience. Inspired by this fact, Brian Arthur defined his
model and it can be described as follows: Suppose total 100 agents are available
to go to the bar and capacity of the bar is only 60. Therefore, if any one finds that
the attendance of the bar exceeds the capacity value, in that case, staying at home
would be a better choice than going to the bar. Similarly, if the attendance of the
bar does not exceed the capacity value, in that case, going to the bar would be a
better choice than staying at home. Also the agents do not interact with each other
while taking their decisions, but previous attendance history of the bar is available
to everyone. Depending upon the previous history, every agent will choose either
to go to the bar or to stay at home. By doing computer simulation,Brian Arthur
surprisingly found that the mean attendance converges to 60 [80].

3.3 Minority Game

As mentioned already, a symmetric choice variant of the El Ferol Bar problem was
introduced by Challet and Zhang [79,81–84] which is known as the Minority game
problem. In their model, they considered two restaurants (n = 2) and N (= 2M+1;
M integer) agents. The agents are going to one of the two restaurants each day.
Every day, one restaurant will always be more crowded than the other. The agents
in the less crowded restaurant are said to be in minority side (or winner side) and
will receive a positive payoff. At the same time, the other restaurant (say majority
side or looser side) is more crowded and every agent in that restaurant will get
a payoff 0. In this problem, if all the agents choose any one of two restaurants
randomly every day then the population distribution of each restaurant will be
Gaussian and the peak of the distribution will be around M with a mean-square
deviation σ (or fluctuation) which is the order of

√
N . The fluctuation in the

problem actually is a measure of the loss of resources in this game. Therefore,
the fluctuation in the problem should be optimized and researchers developed
algorithm to adjust weights in the strategy space depending upon the past history
of his/her success or failure. Now if anyone use only h days as a memory size for
taking decision on the next day then total number of possible strategies will be 2h

which is a fast-growing function of h. They observed that the fluctuation in the
problem could be reduced to a certain minimum level by increasing the memory
size of the agents. The fluctuation is numerically found to have a minimum value
(about 1/10 of

√
N , the random case value) between short memory and large

memory size of agents. A Monte Carlo simulation of the variability of fluctuation
in memory size is shown in fig. 4.

Minority Game and Market Model:The main aim of introducing the Minority Game
model was to serve as a market model. It was mapped to the market model by
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Fig. 4 Square of fluctuation versus α = 2h/N for different number of agents N =
101, 201, 301, 501, 701 (�, ♦, 4, C, O, respectively). Inset: Variation of mean success rate
of the agents’ with α. From [83].

identifying the two choices as ‘buy’ or ‘sell’ options for any trader. More buyers
than sellers in any day means gain (positive payoff) for sellers and opposite when
they are more in number. Therefore, the total payoff of all agents is equivalent to
excess demand of the market. We know that price return of the market is directly
related to the excess demand. By doing this, one can relate the problem to the
MG (for details see [79]).

3.4 Kolkata Paise Restaurant Problem

The Kolkata Paise Restaurant Problem was introduced by Chakrabarti et al. in
2009 [85] to accommodate many choices by the agents or players. In this problem,
the number of choices (restaurants) and number of agents, both are large. Again
here, the agents do not interact with each other for making their decisions and
they take their decisions parallelly. Specifically one considers n restaurants and N

agents where n ∼ O(N). Also the previous history of the game is be available to
everyone. Every agent can choose only one restaurant in any day. In this game,
price of a meal is same for all the restaurants and each restaurant can serve only
one agent each day. So, if more than one customer arrive in a day in a restaurant,
one of them will be randomly chosen and will be served and so the rest of the
agents will not get food for that day.

3.4.1 Strategies of the game

In KPR problem, the utilization fraction is defined as the ratio of average number
of agents getting food every day to the total number of restaurants. In this part,
We will discuss different strategies and their corresponding utilization fraction.
The efficient strategy is such that it will give the maximum utilization fraction
within a finite time limit.
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Random Choice First let us talk about random choice strategy [85]. In this case,
an agent will choose any restaurant at random. Therefore, the agents do not use
their memory related to previous attendances of the restaurants for making their
choices. Also the agents are not discussing with each other to make their choice
and all decisions are taken parallelly each day. In this case every agent can choose
only one restaurant for a day. we know that every restaurant can serve only one
agent for a day so it is not guaranteed that every agent will get food every day.
Next part, we will calculate how many agents on an average get served every day.

Suppose there are N agents and n restaurants and in this case all agents choose
any restaurant with probability p = 1/n. Now the probability of restaurants chosen
by m agents for a day is given by

∆(m) =

 

N

n

!

pm(1 − p)N−m; p = 1/n

=
(N/m)m

m!
exp(−N/n) for N → ∞, n→ ∞. (13)

Therefore, the probability of the restaurants not chosen by any agent can be writ-
ten as ∆(0) = exp(−N/n). Now we can write an average fraction of restaurants
visited by at least one agent as

f̄ = 1 −∆(0) ∼ 0.63 for N = n. (14)

Therefore, in the random choice case we get about 63% utilization and obviously
the convergence time to reach this utilization fraction value is zero.

Rank dependent Choice Although the price of a meal in all the restaurants is the
same, we can assume that all restaurants have different rank depending upon the
service quality, food quality etc. . To make a model, we assume that the k-th
restaurant has rank of k and probability to go to that restaurant is proportional
to k. Again all agents do not use previous history for this strategy. If all agents
follow this strategy then it was observed numerically that utilization fraction is
about 57% [87]. Therefore, this strategy is less efficient compared to the random
choice case. Again no time is needed to reach this steady value means same as the
random choice case.

Crowd Avoiding Cases (A) Fully Crowd Avoiding Case: In this case, all the agents
use their memory of previous day attendances history for taking their decisions. If
all the agents decide to choose only the previous day’s vacant restaurants randomly
and completely avoiding other restaurants then it was observed numerically that
the average utilization fraction becomes about 46% [87]. Therefore, this strategy
is much less efficient compared to the previously discussed strategies.

(B) Stochastic Crowd Avoiding Case: In this case, the agents do not avoid the
previously crowded restaurants completely. Suppose nk(t − 1) is the number of
agents arriving or choosing k-th restaurant on (t − 1)-th day, then next day (t)
these agents will visit the same restaurant with probability p = 1/[nk(t − 1)] and
will go to any other restaurants with uniform probability p′ = (1−p)/(N−1). If all
the agents are playing with this strategy then utilization fraction becomes about
80% [87] which is much larger than that for the previously described strategies.
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ulation for N = n = 105 are shown. From [88].

But the time to reach the steady state value of the efficiency here is of the order
of logN which is much larger than the other strategies (but still much smaller
compared to N).

An approximate estimate for above utilization can be made as follows: Sup-
pose in steady state ai is the fraction of restaurants visited by i agents and we
assume ai = 0 for i ≥ 2; we estimate that number of restaurants where 3 or more
customers arrive on any day are negligible. If we take the equal number of agents
and restaurants (N = n) then we can easily write the equations as

a0 + 2a2 = 1

a0 + a1 + a2 = 1 .

According to this strategy, every agent who visited any restaurant alone on a given
day, will surely go the same restaurant next day(p = 1). But if any restaurant
was visited by two agents then the agents will go to the same restaurant with
probability p = 1/2 the next day. In this process every time (a2/4 − a2a2/4)
fraction of restaurants will be vacant from the restaurants previously visited by 2
agents. Similarly a0a2 fraction of restaurants will be visited by one agent from the
restaurants previously visited by none. Therefore one can write

a0 − a0a2 + a2/4 − a2a2/4 = a0 .

If the above three equations are solved, we get a0 = 0.2, a1 = 0.6 and a2 = 0.2 . So
the average fraction of restaurants visited by at least one agent is a1 + a2 = 0.8,
which is very close to the results of the Monte Carlo simulation shown in Fig. 5.

3.4.2 KPR and link with Minority Game

Another important use of the stochastic crowd avoiding strategy is in Minority
Game. Dhar et al. [89] showed that fluctuation of Minority Game can reduce to
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zero within very short time scale by applying a variation of the stochastic crowd
avoiding strategy. The strategy used was as follow: Suppose at any instant of time
population of two restaurants are M + ∆ + 1 and M − ∆ in MG problem. Next
day majority side agents will change the choice with probability p+ = ∆/(M +
∆+ 1) and minority side people will remain their previous choice (p− = 0). Here
agents use previous day information only and ∆ will become zero order within
log log(2M + 1) time.

But in this case there was a problem. At the time when ∆ becomes 0 the
flipping process will stop which means that majority people (M + 1 in number)
will remain in the same state for the rest of the game. Therefore though the
solution gives zero fluctuation the situation will be very unjust a solution for the
majority group. To overcome this problem the probability was later modified as
p+ = (g∆)/(M + g∆+ 1) (g any real positive parameter) and p− = 0 [90]. It was
observed that below g < 2 the dynamic stops after some time but for g > 2 it
never stops,thought ∆(g) ∼ (g − 2) can be made arbitrarily small.

3.5 Summary and discussions

Here we have discussed different games and their efficiencies for different strategies.
First, we considered the El Farol Bar problem which was a game based on inductive
reasoning. In this game, many agents went to a restaurant in a city. The agents
would be happy if they found that crowd of the restaurant did not exceed a certain
threshold value. In the El Farol Bar problem, the agents would not discuss for
making their decisions and one would go to the Bar if he/she was expecting a less
crowded situation. The game was actually represented as a toy model of ‘inductive
learning’ strategy. It was also shown that models based on the inductive learning
were more effective than the deductive rationality for collective or social decision
making contexts.

Later, we have discussed about a variant of El Farol Bar problem which was
called Minority Game. In this game there were two restaurants and many agents.
All the agents choose one of the this restaurants every day without interacting with
each other and the agents in less crowded restaurant would receive payoff and the
agents in the crowded restaurant lose. Both restaurants are similar regarding the
price of the meal but the agents in crowded side did not get any payoff for that
day. In this problem fluctuation associated with attendances of the agents in the
restaurants is an important quantity which can be identified as similar to volatility
in financial markets. We saw that the strategy based on memory size could reduce
the fluctuation up to about 1/10 of the random process fluctuation.

In the next part we have discussed the Kolkata Paise Restaurant (KPR) prob-
lem. In this problem, N agents and n (∼ O(N)) restaurants were considered. The
agents are again non-interacting and they use the past performance records only
for making their decisions. On the other side, price of a meal for each restau-
rant is assumed to be the same so that no budget restriction or specification can
dictate the choice and one restaurant could serve one agent each day and also
agents choose only one restaurant in any day. Therefore, if more than one agent
had arrived at any restaurant in a day then one of the them would be randomly
picked up and served and rest of them would not get food for that day. Here we
discussed different strategies of the game and their efficiency (by measuring uti-
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lization fraction). We observed that the most efficient strategy was the stochastic
crowd avoiding case where the utilization fraction attain a value about 80% within
a time, bounded by logN .

In last part, we have seen that a variant of the stochastic crowd avoiding
strategy (developed for KPR problem) was applied in the Minority Game problem.
Using this strategy, the fluctuation associated with the Minority Game reduced
to the order of zero by taking few time steps (magnitude of convergence time in
order of log logN). But it was also observed that the dynamics of the game would
be stopped after that. As discussed, this problem can be avoided by taking some
noise trader in the game, although the fluctuation remains non zero, thought very
small compared to the random choice case.

4 Economic Success and Failures: Analyses and modeling

4.1 Introduction

Economic phenomena rarely give rise to equitable distributions where everyone has
the same share of the market. In fact, the same emergence of inequality that marks
wealth and income distributions (see Section of this paper), also characterizes other
aspects of economic life, such as the respective fates of an ensemble of products (or
for that matter, services or ideas) that maybe of more or less similar quality. This
applies even to larger economic structures such as organizations and companies
which drive economic growth in most societies; Ormerod has pointed out in the
book Why Most Things Fail [92] that of the successful companies that existed in
the past, only a handful have managed to survive to the present. In fact, the
relative success of firms appear to have a similar long-tailed distribution described
by a power law function that characterizes the distribution of personal income or
wealth [93]. It is thus of some importance to identify features that characterize the
process of economic success and failure.

What decides whether a newly introduced entity in the market will eventually
succeed in face of severe competition from several other competitors is often not
so much a result of intrinsic differences between them but rather a result of a
social collective consensus that emerges stochastically from the interactions be-
tween the choice behavior of individual agents. The choices in many such decision
problems often constitute a discrete set, sometimes even having a binary nature,
for instance, whether one should cooperate with others or defect by exploiting
(free-loading off) the cooperators. These problems resemble the formulation of
spin models used by statistical physicists to analyze in detail cooperative phenom-
ena [94,95]. It is therefore not surprising that the phenomenon of how and why
certain entities become successful through competition has been a topic of interest
among econophysicists.

To understand how people choose from a set of options, mainstream economics
assumes that each individual decides on a specific alternative that maximizes
his/her utility function. Moreover, except possibly for the formulation of the util-
ity function, the behavior of other agents are usually not considered as directly
affecting the decision to select a particular choice. It has however become appar-
ent over the past few decades, e.g., as exemplified by Schelling’s analysis of the
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reasons for housing segregation along racial lines [96], that in many cases the ap-
parent freedom of choice of an agent may well be illusory. Indeed, the decision
taken by an individual is affected by those taken by his/her peers or rather, the
actions of neighboring elements in the corresponding social network [97,98]. A
physics-based approach which stresses on the role of interactions (and hence the
social environment) in taking a decision contrasts with the conventional economic
approach of utility maximization by individual rational agents. This can be crucial
for explaining why a very popular product can suddenly emerge even though it
may difficult to distinguish it from its competitors.

The response of mainstream economic theory to this may well be that it sug-
gests the existence of an unobservable property that should be included as a term
in the utility function which differentiates the popular entity from its competitors.
However, as this assertion cannot be verified empirically, we cannot comment on
its scientific validity. By contrast, an interactions-based mechanism may suggest
that although a specific choice did not have any intrinsic advantage over others,
stochastic fluctuations may have resulted in a relatively larger number of individ-
uals opting for it initially. This may generate a small advantage in favor of the
choice being adopted by others. For example, more people buying a product may
make it more economical to produce (economy of scale) or the use of a particular
product by some may make it more likely to be adopted by their acquaintances
(network externalities). Eventually, through a process of self-reinforcing or positive
feedback via interactions, an inexorable momentum is created in favor of the entity
that builds into an enormous advantage in comparison to its competitors (see e.g.
Ref [99] for an application of this idea into high-technology markets). While the
idea of such feedback or externalities has been discussed in economics from quite
early on (see the article by Paul Krugman [100] and responses to it by others, in-
cluding Kenneth Arrow [101]), the quest for analytically tractable linear economic
models among mainstream practitioners has meant that a nonlinear interactions-
based perspective for analyzing economic phenomena has become popular only
recently with the advent of econophysics. The study of economic popularity is one
such area that has benefited from this incursion of physics ideas into economics.

4.2 The economic fate of movies: A case study

Movie popularity provides an arena for analyzing the phenomena of economic
success or failure arising through interactions among agents - not least because
of the availability of large quantities of publicly available digital data. In fact,
there have been recent attempts to use temporal patterns in the digital data,
e.g., the increase in the number of blog posts on specific movies [102] or in rising
activity in the Wikipedia entries for soon-to-be or newly released movies [103], to
provide early prediction for the success of a movie. However, we shall here focus
on the data about the box-office gross receipts of a movie during its initial run at
theaters. Note that, unlike the popularity of several other types of products (e.g., to
measure the popularity of a car, we look at how many people are driving it), in the
case of a movie it is not completely obvious how to identify a unique observable
that will be efficient at capturing all the different dimensions of its popularity.
For example, one can consider the average of the ratings given by different film
critics in various media, votes received in movie-related forums online or the total
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number of DVDs bought or rented. For example, we can take the case of popular
movies decided by votes of registered users of the Internet Movie Database (IMDb)
(http://www.imdb.com), one of the largest movie-related online sites. As voters
can give a score between 1 and 10 to a movie, with 1 corresponding to ëawfuli
and ë10i to excellent, the rating of a movie can be decided by taking the average
over all votes. Unfortunately, there are obvious limitations in using such a score
for accurately measuring the popularity of movies. In particular, different scores
may be only reflecting the amount of information about the movies available with
voters. Thus, the older, so-called “classic” movies may be judged by a completely
different yardstick compared to recently released films in view of the differences
in the votersi knowledge about them. Possibly more important from a economic
agent’s point of view is that as it does not cost the user anything to vote for
a movie in the online forums, the vital element of competition for viewers that
governs which product/idea will eventually become popular is missing from this
measure. Therefore, focusing on the box-office gross earnings of movies after they
are newly released in theaters is a reasonable measure of their relative popularity,
as the potential viewers have a roughly similar kind of information available about
the competing items. Moreover, such ëvoting with oneis walleti is arguably a more
honest indicator of individual preference for movies.

An important property to note about the distribution of movie income is that
it deviates significantly from a Gaussian form with a much more extended tail. In
other words, there are many more highly popular movies than one would expect
from a normal distribution. This immediately suggests that the process of emer-
gence of popularity may not be explained simply as the outcome of many agents
independently making binary (namely ‘yes’ or ‘no’) decisions to adopt a particular
choice, such as going to see a particular movie. As this process can be mapped to
a random walk, we expect it to result in a Gaussian distribution that, however, is
not observed empirically. Previous studies of movie income distribution [104–106]
have looked at limited datasets and found some evidence for a power-law fit. A
more rigorous analysis using data on a much larger number of movies released
across theaters in the USA was performed in Ref. [107]. While the tail of the dis-
tribution for both the opening gross and the total gross for movies may appear to
follow an approximate power law P (I) ∼ I−α with an exponent α ' 3 [107], an
even better fit is achieved with a log-normal form [108],

P (x) =
1

xσ
√

2π
e−lnx−µ)2/2σ2

, (15)

where µ and σ are parameters of the distribution, being the mean and standard
deviation of the variableis natural logarithm [see Fig. 6 (a)]. The lognormal form
has also been seen in the income distribution of movies released in India and
Japan [108]. It is of interest to note that a strikingly similar feature has been ob-
served for the popularity of scientific papers, as measured by the number of their
citations, where initially a power law was reported for the probability distribu-
tion with exponent 3 but was later found to be better described by a log-normal
form [109,110].

Instead of focusing only on the tail (which corresponds to the top grossing
movies), if the entire income distribution is considered, we notice another impor-
tant property: a bimodal nature. There are two clearly delineated peaks, which
correspond to a large number of movies having either a very low income or a very
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high income, with relatively few movies that perform moderately at the box office.
The existence of this bimodality can often mask the nature of the distribution,
especially when one is working with a small dataset. For example, De Vany and
Walls, based on their analysis of the gross for only about 300 movies, stated that
log-normality could be rejected for their sample [111]. However, they had clearly
assumed that the underlying distribution can be fitted using a single unimodal
form. This assumption was evidently incorrect as evident from the histogram of
their data. A more detailed and comprehensive analysis with a much larger dataset
shows that the distribution of the total (as well as the opening) gross is in fact a
superposition of two different log-normal distributions [108].

4.3 Log-normal nature of economic performance

To understand the origin of the bimodal log-normal distribution of the gross in-
come for movies one can of course assume that this is directly related to the
intrinsic quality of a movie or some other attribute that is intimately connected to
a specific movie (such as how intensely a film is promoted in the media prior to its
release). In the absence of any other objective measure of the quality of a movie,
we can use its production budget as an indirect indicator because movies with
higher budget would tend to have more well-known actors, better visual effects
and, in general, higher production standards. However, empirically we note that
although, in general, movies with higher production budget do tend to earn more,
the correlation is not very high (the correlation coefficient r is only 0.63). Thus,
production budget by itself is not enough to guarantee economic success. Another
possibility is that the immediate success of a movie after its release is dependent
on how well the movie-going public have been made aware of the film by pre-
release advertising through various public media. Ideally, an objective measure for
this could be the advertising budget of the movie. However, as this information is
mostly unavailable, one can use instead data about the number of theaters that
a movie is initially released at. As opening a movie at each theater requires or-
ganizing publicity for it among the neighboring population and wider release also
implies more intense mass-media campaigns, we expect the advertising cost to
roughly scale with the number of opening theaters. Unfortunately, the correlation
between this quantity and per theater movie income is essentially non-existent. In
this context, one may note that De Vany and Walls have looked at the distribution
of movie earnings and profit as a function of a variety of variables, such as genre,
ratings, presence of stars, etc, and have not found any of these to be significant
determinants in movie performance [106].

In fact, the bimodal log-normal nature appears as a result of two independent
factors, one responsible for the log-normal form of the component distributions and
the other for the bimodal nature of the overall distribution. First, turning to the
log-normal form, we observe that it may arise from the nature of the distribution of
gross income of a movie normalized by the number of theaters in which it is being
shown. The income per theater gives us a more detailed view of the popularity
of a movie, compared to its gross aggregated over all theaters. It allows us to
distinguish between the performance of two movies that draw similar numbers of
viewers, even though one may be shown at a much smaller number of theaters
than the other. This implies that the former is actually attracting relatively larger
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audiences compared to the other at each theater and hence is more popular locally.
Thus, the less popular movie is generating the same income simply on account of
it being shown in many more theaters, even though fewer people in each locality
served by the cinemas may be going to see it. The appearance of the log-normal
distribution may not be surprising in itself, as it is expected to occur in any linear
multiplicative stochastic process. The decision to see a movie (or not) can be
considered to be the result of a sequence of independent choices, each of which
have certain probabilities. Thus, the final probability that an individual will go to
the theater to watch a movie is a product of each of these constituent probabilities,
which implies that it will follow a log-normal distribution. It is worth noting here
that the log-normal distribution also appears in other areas where the popularity
of different entities arises as a result of collective decisions, e.g. in the context of
proportional elections [112], citations of scientific papers [110,113] and visibility
of news stories posted by users on an online website [114].

4.4 Bimodality of success and failure

Turning now to the bimodality in the income distribution, this appears to be
related to an observed bimodality in the distribution of the the number of theaters
in which a motion picture is released [see Fig. 6 (b)]. Thus, most movies are shown
either at a handful of theaters, typically a hundred or less (these are usually
the independent or foreign movies), or at a very large number of cinema halls,
numbering a few thousand (as is the case with the products of major Hollywood
studios). Unsurprisingly, this also decides the overall popularity of the movies to
an extent, as the potential audience of a film running in less than 100 theaters is
always going to be much smaller than what we expect for blockbuster films. In most
cases, the former will be much smaller than the critical size required for generating
a positive word-of-mouth effect spreading through mutual acquaintances, which
will gradually cause more and more people to become interested in seeing the
film. There are occasional instances where such a movie does manage to make the
transition successfully, when a major distribution house, noticing an opportunity,
steps in to market the film nationwide to a much larger audience and a ësleeper
hiti is created. An example is the movie My Big Fat Greek Wedding, which opened
in only 108 theaters in 2002 but went on to become the fifth highest grossing movie
for that year, running for 47 weeks and at its peak being shown in more than 2000
theaters simultaneously.

Bimodality has also been observed in other popularity-related contexts, such
as in the electoral dynamics of US Congressional elections, where over time the
margin between the victorious and defeated candidates has been growing larger
[115]. For instance, the proportion of votes won by the Democratic Party candi-
date in the federal elections has changed from about half of all votes cast to one
of two possibilities: either about 35n40% (in which case the candidate lost) or
about 60n65% (when the candidate won). This can be explained using a theoreti-
cal framework for describing how collective decisions arise from individual binary
choice behavior [116,117]. Here, individual agents take ëyesi or ënoi decisions on
issues based on information about the decisions taken by their neighbors and are
also influenced by their own previous decisions (adaptation) as well as how accu-
rately their neighborhood had reflected the majority choice of the overall society
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in the past (learning). Introducing these effects in the evolution of preferences for
the agents lead to the emergence of two-phase behavior marked by transition from
a unimodal behavior to a bimodal distribution of the fraction of agents favoring
a particular choice, as the parameter controlling the learning or global feedback
is increased [116]. In the context of the movie income data, we can identify these
choice dynamics as a model for the decision process by which theater owners and
movie distributors agree to release a particular movie in a specific theater. The
procedure is likely to be significantly influenced by the previous experience of the
theater and the distributor, as both learn from previous successes and failures of
movies released/exhibited by them in the past, in accordance with the assump-
tions of the model. Once released in a theater, its success will be decided by the
linear multiplicative stochastic process outlined earlier and will follow a log-normal
distribution. Therefore, the total or opening gross distribution for movies may be
considered to be a combination of the lognormal distribution of income per theater
and the bimodal distribution of the number of theaters in which a movie is shown.

4.5 Power law decay of income with time

To go beyond the simple blockbusternsleeper distinction and have a detailed view
of the time evolution of movie performance, one has to consider the trend followed
by the daily or weekly income of a movie over time. This shows an exponen-
tial decay with a characteristic rate, a feature seen not only for almost all other
blockbusters, but for bombs as well (the rate is different for different movies).
The only difference between blockbusters and bombs is in their initial, or opening,
gross. However, sleepers may behave differently, showing an initial increase in their
weekly gross and reaching the peak in the gross income several weeks after release.
For example, in the case of My Big Fat Greek Wedding (referred earlier) the peak
occurred 20 weeks after its initial opening. It was then followed by exponential
decay of the weekly gross until the movie was withdrawn from circulation.

Instead of looking at the income aggregated over all theaters, if we consider
the weekly gross income per theater, a surprising universality is observed. As
previously mentioned, the income per theater gives us additional information about
the movieis popularity because a movie that is being shown in a large number of
theaters may have a bigger income simply on account of higher accessibility for
the potential audience. Unlike the overall gross that decays exponentially with
time, the gross per theater of a movie shows a power-law decay in time measured
in terms of the number of weeks from its release, W : gW ∼ W−β , with exponent
β ∼ 1 [108]. Thus, the local popularity of a movie at a certain point in time appears
to be inversely proportional to the duration that has elapsed from its initial release.
This shares a striking similarity with the time evolution of popularity for scientific
papers in terms of citations as the citation probability to a paper published t

years ago decays approximately as 1/t [110]. In a very different context, namely,
the decay over time in the popularity of a website (as measured by the rate of
download of papers from the site) and that of individual web pages in an online
news and entertainment portal (as measured by the number of visits to the page),
power laws have also been reported but with different exponents [118,119]. More
recently, the relaxation dynamics of popularity with a power-law decay have been
observed for other products, such as book sales from Amazon.com [120] and the
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Fig. 6 Distribution of the logarithms of (a) the total gross income of a movie, Gt and (b) the
number of theaters in which it opened, No, for all movies released in USA during 1997-2012.
Fit with bimodal log-normal distributions shows that the empirical data can be well described
by this theoretical form.

daily views of videos posted on YouTube [121], where the exponents appear to
cluster around multiple distinct classes.

4.6 The stylized facts of “popularity”

Thus, we observe that the complex process of economic success can be understood,
at least in the case of movies, in terms of three robust features that (using the
terminology of economics) we can term as the stylized facts of popularity: (i) log-
normal distribution of the success of individual agents (theaters), (ii) the bimodal
distribution of the number of agents taking part in a particular round (the theaters
in which a movie is shown) and (iii) power-law decay with time of the economic
performance of agents (gross income per theater). Some of these features have
been seen in areas outside economics in which popularity dynamics play a role,
such as citations of scientific papers or political elections. This suggests that it
is possible that the above three properties apply more generally to the processes
by which a few entities emerge to become a successful product or idea. Possibly
a unifying framework may be provided by understanding successful or popular
entities as those which have repeatedly survived a sequential failure process [108].

5 Inter-firms and banks-firms network structures: Empirical studies

5.1 Introduction

Credit-debt relationships among economic agents comprise as a whole large-scale
networks of the economic system at nation-wide and global scales. There are differ-
ent layers in such networks even at the core of real-economic and financial systems.
One layer is an arena of real economy, namely supplier-customer links among firms
as nodes. The firms activities are financed from financial institutions as well as
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directly from financial markets. The layer of supplier-customer network is thus
linked to another layer of financial network between firms and banks. Further-
more, the banks are also creditors and debtors of themselves comprising another
layer of inter-banks network.

As a financial system, the inter-bank network resides at the core, which is
connected with firms, via banks-firms network, at a periphery of the system; the
periphery is a large network of supplier and customer for the engine of real econ-
omy. These networks are actually further linked to financial markets, but one may
depict the basic picture in a way given in Fig. 7.

Fig. 7 Inter-bank, banks-firms credit, and supplier-customer networks schematically depicted.
Financial institutions or banks (squares) and firms (circles) are creditors and debtors in the
links of inter-bank credit (lines), lending-borrowing between banks-firms (dashed lines), and
supplier-customer links among firms (dotted lines).

Systemic risk is a network effect caused by failures or financial deterioration
of debtors and creditors through the credit-debt links to other nodes even in a
remote part of the networks (see [139] and references therein). The systemic risk
often has considerable consequences at a nation-wide scale, and sometimes to a
world-wide extent, as we experience today in repeated financial crises.

While the understanding of inter-bank network at the core of financial system is
crucial (see [125,129,135,140,134,124] and references therein for a surge of research
focusing on inter-bank networks in different countries), no less important is the
propagation of risk from the core of banks to the periphery of firms, vice versa,
as well as the propagation of risk among firms. Unfortunately, empirical study
based on real-data of banks-firms network or supplier-customer network at a large
scale is still lacking. Only recently, there are literature in economics including the
studies on US trade network among sectors using input-output (IO) data [123],
propagation of sectoral shocks through the IO network [131], US inter-sectoral
trade [128], for example; see also reviews [127,139] and conference reports [122,
136] for collaborative works between physics and economics.

This paper reviews recent empirical studies in Japan on banks-firms lending-
borrowing credit network including all financial institutions and listed firms for
decades [130,132], and on supplier-customer network covering a million firms and
all bankruptcies in a year [133]. We present new materials here in addition to the
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description on the unique and exhaustive properties of the Japanese data, but
mainly focused is to review recent availability of large-scale networks at nation-
wide scale, which can potentially open a new empirical and theoretical studies.

5.2 Banks-firms Credit Network

5.2.1 Data of Lending-Borrowing between Banks and Firms

The dataset is based on a survey of firms quoted in the Japanese stock-exchange
markets (Tokyo, Osaka, Nagoya, Fukuoka and Sapporo, in the order of market
size). The data were compiled from the firms’ financial statements and survey by
Nikkei. They include the information about each firm’s borrowing obtained from
financial institutions such as the amounts of borrowing from 1980 to 2012 including
the years of Japanese financial crisis in the late 90s.

For financial institutions, we select commercial banks as a set of leading suppli-
ers of credit. The set comprises long-term, city, regional (primary and secondary),
trust banks, insurance companies and other institutions including credit associa-
tions. During the examined period, more than 200 commercial banks existed, while
the number of listed firms is more than 1600.

5.2.2 Bipartite Network Structure

Annual snapshot of the lending-borrowing network can be regarded as a bipartite
graph. Nodes are either banks or firms9. Banks and firms are denoted by Greek
letters β (β = 1, . . . , n) and Latin letters f (f = 1, . . . ,m) respectively. n is the
number of banks, and m is that of firms. An edge between a bank β and a firm f is
defined to be present if there is a credit relationship between them. In addition, a
positive number xβf is associated with the edge, which is defined to be the amount
of the credit. We can depict the network as shown in Fig. 8.

Fig. 8 Credit network as a bipartite graph. An edge connecting between bank β and firm f
is associated with an amount of credit xβf as a weight.

xβf is the amount of lending by bank β to firm i, which precisely equals to the
amount of borrowing by firm i from bank β. The total amount of lending by bank

9 Note that banks are not included in the side of firms, even if they are borrowing from other
banks. Because our dataset includes banks’ borrowing only partially, the interbank credit is
not considered here, though it is no less important than the bank-firm credit studied here.
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β is
xβ =

X

f

xβf , (16)

and the total amount of borrowing by firm f is

xf =
X

β

xβf . (17)

The distributions for the amount of credit, xβ , xf , and the number of borrowers
and lenders, denoted by kβ , kf respectively, have long-tails. They are shown, for
the data of credit relationships in the year 2011, in Fig. 9 (a) to (d). There is a
significant correlation between wβ and kβ in a natural way, and also for wf and kf ,
as shown in Fig. 9 (e) and (f) respectively. In particular, from the Fig. 9 (e), we
can observe an empirical relation of kβ ∝ wa

β , where a ≈ 0.67 ± 0.04 (least-square

fit; error 95% level). This implies the relation of wβ/kβ ∝ k0.49±0.07
µ meaning that

the average loan is larger for the larger degree kµ, or roughly speaking, for the
larger banks.

Important properties of the large-scale structure of banks-firms network can
be summarized as follows:

– Long-term and city banks are lenders to a number of listed firms. Calculation
of Herfindahl index, defined by the sum of squares of shares in the lending
amount, shows that they typically lend to 100 firms in the set of 1,600 firms.

– Regional banks have much narrower scope of lending, typically a tenth of long-
term and city banks; the lending patterns are closely related to geographical
regions.

– From a similarity measure defined by lending patterns of banks, one can con-
struct a minimum-spanning tree (MST), for example (see also [137]). The re-
sulting MST reveals a community structure between banks and firms, the mod-
ules of which are related to geographical locations and historical developments
of the financial institutions.

See also [130].

5.2.3 Distress Propagation on the Firms-Banks Network

We note that a same value xβf has different meanings as a weight to the bank β

and to the firm f . For example, even if 90% of the total lending of the bank β goes
to the firm f , it may be the case that f depends on β by only 20% for all the loans
from banks. It is therefore natural to define wf→β = xβf/xβ , which represents the
relative weight of lending by bank β to firm f , or dependency of β on f . Similarly,
we define wβ→f = xβf/xf , which represents the relative amount of borrowing by
firm f from bank β, or dependency of f on β. See Fig. 10.

Suppose that bank β has a state of financial deterioration. Then it may shrink
the amount of its supplied credit, increase interest-rate, shorten the due time of
payment by firms, and so forth. This would eventually influence firm f to an extent
that can be quantified by wβ→f , because it represents the dependency of firm f

on bank β for the source of financing. See Fig. 10 (a).
Similarly for the reverse direction of influence, from firms to banks. Firm f

with some level of financial deterioration may delay its repayment, have defaults,
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Fig. 9 (a) Cumulative distribution for banks’ lending, xβ . (b) For firms’ borrowing, xf . (c) For
the number of banks’ lending relationships,kβ . (d) For the number of firms’ borrowing rela-
tionships, kf . (e) Scatter plot for banks’ xβ and kβ . (f) Scatter plot for firms’ wf and kf . All
the plots are for the data in the year 2011. Rank correlations (Kendall’s τ) for (e) and (f) are
τ = 0.814(15.0σ) and τ = 0.384(23.5σ) respectively (σ calculated under the null hypothesis of
statistical independence).

(a) Dependency of firm f on
banks β.

(b) Dependency of bank β on
firms f .

Fig. 10 Dependency between banks and firms.
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even fail into bankruptcy, and so forth. Then the lending banks will not be able
to fully enjoy profits in expected amounts due to the delay, may possibly have
bad loans partially, if not totally, for the credit given to bankrupted firms. This
influence can be quantified by wf→β . See Fig. 10 (b).

This consideration can lead one to a methodology of evaluating the level of
financial distress that potentially propagate on the network of banks-firms credit.
We invented a method based on eigen-vectors and eigen-values structure of the
matrices of weights in [132]. By comparing the eigen-structure with that obtained
in random bipartite graphs, we found that the largest few (non-trivial) eigenvalues
are significant. We performed historical analysis for our datasets, and showed that
there are periods when the eigen-structure is stable or unstable, and that a par-
ticular set of banks, mostly a few regional banks, have large values of the fragility
scores. Drastic change occurs in the late 80s during the bubble and also at the
epochs of financially unstable periods including the financial crisis in Japan.

5.3 Production Network among Firms

5.3.1 Data of Large-scale Production Network

Let us say that a directed link is present as A → B in the production network,
where firm A is a supplier to another firm B, or equivalently, B is a customer of
A. While it is difficult to record every transaction among suppliers and customers,
it is pointless to have a record that a firm buys a pencil from another. Necessary
for our study are data of links such that the relation A → B is crucial for the
activity of one or both A and B. If at least one of the firms at either end of a link
nominates the other firm as most important suppliers or customers, then the link
should be listed. This has a good analogy to a survey of social network, namely
“who are your friends important to yourself?”

Our dataset for supplier-customer links has been accumulated on such an idea
by one of the leading credit research agencies in Tokyo, which regularly gathers
credit information on most of active firms through investigation of financial state-
ments, corporate documents and by hearing-based survey at branch offices located
across the nation.

A typical number of active firms in Japan is roughly estimated to be 2 million10.
We employ a snapshot of production networks compiled in September 2006. In the
data, the number of firms is roughly a million, and the number of directional links
is more than four million.

5.3.2 Network Structure

The entire network can be represented as a directed graph. To understand the
global connectivity, the following graph-theoretical method is useful as was per-
formed in the study of the hyperlink structure of the world-wide web [126].

10 The National Tax Agency Annual Statistics Report. Other major sources are Establish-
ment and Enterprise Census by the Ministry of Internal Affairs and Communications, and the
Ministry of Justice’s records on the entry and exit of firms, which are said to have under- or
over-estimation problems due to the counting of non-active firms and so forth.
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NW= The whole network.
GWCC= Giant weakly connected component: the largest connected compo-
nent when viewed as an undirected graph. An undirected path exists for an
arbitrary pair of firms in the component.
DC= Disconnected components: other connected components than GWCC.
GSCC= Giant strongly connected component: the largest connected compo-
nent when viewed as a directed graph. A directed path exists for an arbitrary
pair of firms in the component.
IN= The firms from which one can reach the GSCC by a directed path.
OUT= The firms that are reachable from the GSCC by a directed path.
TE= “Tendtrils”; the rest of GWCC. Note that TEs may not look like tendrils.

It follows from the definitions that

NW = GWCC + DC (18)

GWCC = GSCC + IN + OUT + TE (19)

For the benefit of readers, a small example is given in Fig. 11.

(a) A directed graph (b) “Bowtie structure”

Fig. 11 A simple example of bowtie structure for a graph

The result for the numbers of firms is given as follows:
Component #firms Note

NW 1,019,854
GWCC 1,009,597 99% × NW

DC 10,257 component-size ≤ 4
GSCC 462,563 46% × GWCC

IN 182,018 18% × GWCC
OUT 324,569 32% × GWCC

TE 40,447 4% × GWCC
Total 1,009,597 equal to GWCC

The shortest-path lengths (distances) from the GSCC and firms in the IN and
OUT are given by:

Distance from GSCC to IN

Distance #firms
1 175,855
2 5,949
3 206
4 8

Total 182,018

Distance from GSCC to OUT

Distance #firms
1 308,572
2 15,441
3 536
4 20

Total 324,569
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Any two firms in the network are mutually reachable within 8 directed links
as seen from the above table. The inspection of industrial sectors of firms in these
components shows that the IN has a relative excess of agriculture, forestry, real
estate, and a relative shortage of government-related firms; and that the OUT
has a relative excess of medical/health care/welfare, food establishments, and a
relative shortage of manufacturing. The majority of manufacturing firms is present
in the GSCC.

Important properties of the large-scale structure of production network can be
summarized as follows:

– The distributions for the numbers of suppliers/customers (in/out degrees) have
long-tails. Denoting the degree by k, the cumulative distributions obey the
power-law:

P>(k) ∼ k−µ (20)

where the exponents µ ∼ 1.3.
– There exists a significant positive correlation between the degree and firm-size.

Large firms are basically big suppliers/customers, while small and medium
enterprises (SME) have relatively smaller numbers of links.

– There exists a weak negative correlation between the degrees at the ends of
each link. This means in typical cases of manufacturing sectors that large firms
have a number of SMEs as suppliers.

– Transitivity or clustering coefficients, the probability of finding triangles, is
small compared with what is expected by random graphs preserving degree-
distributions (see [138] for a lucid introduction).

– There exists a hierarchical modular or community structure. For example,
manufacturing sectors have communities including electronics, heavy indus-
try, foods, automobiles, construction material, pulp/paper and apparel. The
electronics can be recursively divided into sub-communities, which are groups
of industrial organization having historical developments and the so-called
keiretsu, and/or are located in divided geographical sectors. Examples include
sub-communities of Hitachi, Fujitsu, NEC; Panasonic, Sharp; Canon, Epson,
Nikon, etc.

– Furthermore, these communities can be found to be quasi-cliques in a corre-
sponding bipartite graph as follows. A supplier-customer link u → v for a set
of nodes V (u, v ∈ V ) can be considered as an edge in a bipartite graph that
has exactly two copies of V as V1 and V2 (u ∈ V1 and v ∈ V2). Large and com-
peting firms quite often share a set of suppliers to some extent, depending on
the industrial sectors, geographical locations and so on. For example, Honda
(v1), Nissan (v2) and Toyota (v3) possibly have a number of suppliers ui of
mechanical parts, electronic devices, chassis and assembling machines, etc., in
common. Then the links form a clique or a quasi-clique in the bipartite graph,
where most possible links from ui to v1, v2, v3, . . . are present. This forms a
portion in the entire graph with a higher density than other portions, which is
basically the community structure in the production network.

We refer the readers to the reference [133] and tables and figures therein.
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5.3.3 Chain of Bankruptcies

Supplier-customer link is a credit relation [141]. Whenever one delivers goods to
others without an immediate exchange of money or goods of full value, credit is ex-
tended. Frequently, suppliers provide credit to their customers, who supply credit
to their customers and so forth. Also customers can provide credit to their suppli-
ers so as to have them produce an abundance of intermediate goods beforehand.
In either case, once a firm goes into financial insolvency state, its creditors will
possibly lose the scheduled payment, or goods to be delivered that have been nec-
essary for production. The influence propagates from the bankrupted customer to
its upstream in the former cases, and similarly from the bankrupted supplier to its
downstream in the latter cases. Thus a creditor has its balance-sheet deteriorated
in accumulation, and may eventually go into bankruptcy. This is an example of a
chain of bankruptcy.

A bankruptcy chain does not occur only along the supplier-customer links.
Ownership relation among firms is another typical possibility for such creditor-
debtor relationship. It is, however, also frequently observed in our dataset that
supplier-customer links are also present between holding and held companies, and
sibling and related firms. We assume that most relevant paths along which the
chain of bankruptcy occurs are the creditor-debtor links of the production network.

Corresponding to the snapshot of the network taken in September 2006, we
employ an exhaustive list of all the bankruptcies for exactly one-year period from
October. The number of bankruptcies amounts to roughly 0.13 million, daily
mean being 30, and includes a few bankruptcies of listed firms. Nearly half of
the bankrupted firms, precisely Nb ≡ 6264, were present on the network at the
beginning and went into bankruptcy during the period. One can define the prob-
ability of bankruptcy by

p = Nb/N ≈ 0.620% (21)

Note that the probability has inverse of time in its physical dimension. A year
was chosen for the time-scale so that it should be longer than the time-scale for
financial activities of firms, typically weeks and months, and be shorter than that
for the change of network itself.

By using these data, we examined the size distribution for chains of bankrupt-
cies, or avalanche-size distribution. We used a method to evaluate the frequencies
of accidental chain in randomized networks, and found that the actual avalanche
has a heavy tail distribution in its size. Combining with the large-scale properties
and heterogeneity in modular structures, we claim that the effect to a number of
creditors, non-trivially large due to the heavy tail in the degree distribution, is
considerable in the real economy of the nation [133].

5.4 Summary

We briefly review recent empirical studies on financial networks based on large-
scale datasets at nation-wide scale in Japan, banks-firms credit network and pro-
duction network of suppliers and customers. These datasets provide a quite unique
opportunity to investigate the structure and dynamics of networks as well as prop-
agation of financial distress on the them. Because the networks are an arena with
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different levels of economic agents and relationships among them, on which eco-
nomic activities take place with possible propagation of financial fragility and
distress, it is crucial to understand them based on empirical study. We believe
that the current and future collaboration with economists, physicists, computer
scientists and practitioners in central banks all over the world would be of great
value potentially leading to new ways to monitor and control financial crises that
we experience more and more frequently today in the complex connected systems
of economy.

6 Financial time-series analyses: Wiener processes and beyond

6.1 Introduction

Nowadays, many people accept the conjecture that there exist probabilistic nature
behind almost all of events around us. In economic science, Bachelier [142] dealt
with the time-series in financial markets using random walk concept which was
five years before Einstein’s seminal paper on Brownian motion to determine the
Avogadro number. Bachelier attempted to describe the up-down movement of the
price changing by means of the Chapman-Kolmogorov equation and found that
now-called Wiener process is a solution of the equation (see e.g. [143] for the details).

To see the Wiener process, let us define Xt as a price of commodity at time t.
Then, we assume that the price updates according to the following rule:

Xt+1 = Xt + Yt (22)

where Yt is an additive white Gaussian noise satisfying 〈Yt〉 = 0 and 〈YtYs〉 = σ2δt,s

under the definition: 〈· · · 〉 =
R∞
−∞(· · · )(dYt/

√
2πσ) e−Y 2

t /2σ2
. Repeating the above

recursion relation (22), we obtain the price at time N as a cumulative return as
XN ≡

PN
t=1 Yt, where we setX1 = 0 for simplicity. It is easy for us to show thatXN

also obeys a Gaussian with mean zero and the variance Nσ2. The model described
by (22) to generate a time-series is referred to as Wiener process. It should be noted
that even if Yt does not follow a Gaussian, XN can posses a Gaussian density with
mean zero and the variance Nσ2 if the variance of each independent component
Yt in XN is finite, namely, 〈YtYs〉 = σ2δt,s < ∞ in the limit of N → ∞. In other
words, the density of the stochastic variable ZN ≡ XN/

√
Nσ follows

lim
N→∞

P (ZN ) = N (0, 1). (23)

This fact is known as central limit theorem.

6.2 Empirical evidence and stable distributions

However, several extensive empirical data analysis (see e.g. [144,1] ) revealed that
real financial time series does not follow the Wiener process. This means that
the return in financial markets is not generated by a Gaussian distribution and
especially the empirical distribution possess a heavy tail. In Fig. 12, we show the
the probability distribution of the Standard & Poor’s (S&P) 500 index observed
at various time intervals ∆t (namely, X∆t =

P∆t
l=1 Yl in terms of (22)) [144].
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Obviously, these plots do not look like Gaussian distributions and they have much
large kurtosis and exhibit heavy tails. From the central limit theorem, this fact

Fig. 12 The left panel shows the probability distribution of the Standard & Poor’s (S&P) 500
index observed at various time intervals ∆t. From the right panel, we find that the empirical
distribution of the left panel is well-described by a Levy stable distribution with α = 1.4 and
γ = 0.00375. The broken line is a Gaussian with the same mean 0.0508 as in the empirical
distribution of S&P 500 index with ∆t = 1. (The both panels are taken from the reference
[144]).

means that the return of the data Yt does not have a finite variance. Hence, we
cannot describe the data in terms of the Wiener process.

In order to describe more generalized stochastic process including the Wiener
process, we here introduce the so-called stable process. Let us consider that inde-
pendent stochastic variables Y1, Y2, · · · , YN obey the identical distribution P (y).
Then, the Fourier transform of the distribution of variable X(= Y1 + · · · + YN ),
say, PN (X) is given by φN (q) = {φ(q)}N , where we defined

φ(q) =

Z ∞

−∞
P (y)e−iqydy. (24)

The inverse transform of φN (q) is immediately written as

PN (X) =
1

2π

Z ∞

−∞
φN (q) eiqXdq. (25)

One can conclude that P (y) is stable if P (y) possesses the same function as the
PN (X) does. Especially, for a specific choice φ(q) = e−γ∆t|q|α where ∆t is a scaling
factor due to the sampling interval, the P (y) leads to

P (y : ∆t) =
1

π

Z ∞

0
dqe−γ∆t|q|α cos(qy) ≡ PL(y : ∆t) (26)

The PL(y : 1) is refereed to as Levy distribution. We should keep in mind that
PL(y : 1) is identical to a Gaussian when we set α = 2, and Lorentzian for α = 1.
At the tail regime, that is, for |y| � 1, we have the power-law behavior as PL(y :
1) ∼ y−(α+1).

As shown in Fig. 12 (left), the shape of return distribution is dependent on the
sampling intervals ∆t. Obviously, if one chooses a large ∆t, it is a very rare event
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to obtain the large |Yt| and we need huge data points to confirm the shape of the
distribution. To avoid this difficulty, we rescale the variables according to Man-
tegna and Stanley[144], namely, ys = y/(∆)1/α, PL(ys : 1) = PL(y : ∆t)/(∆t)−1/α.
All empirical data having various sampling intervals ∆t collapse on the ∆t = 1
distribution by accompanying with the above rescaling with α = 1.4 and it is
well-described by a Levy distribution PL(y) ≡ PL(ys : 1) as shown in Fig. 12
(right).

6.3 Time-dependent volatility and the prediction models

In the Wiener process, the standard deviation (the volatility in the context of
finance) σ is independent of time. However, as empirical analysis for financial time
series has revealed, the volatility itself is dependent on time and usually exhibits
several distinct behavior, namely, it possess a long memory [1,2]. The long memory
is observed through the power-law behavior of the auto-correlation function with
respect to the volatility, that is,

σlσl+t ≡ lim
L→∞

1

L

L
X

l=1

σlσl+t ∼ t−β (27)

where we defined σ2
t ≡ (1/T )

Pt
l=t−1−T Y

2
l − {(1/T )

Pt
l=t−1−T Yl}2 which is eval-

uated in the time window with width T assuming the stationarity of Yt. This is
one of the remarkable features of the volatility in comparison with the fact that
the auto-correlation function of return Yt decays exponentially as YlYl+t ∼ e−βt.

For the time-series having the time-dependent volatility, several models to pre-
dict the behavior have been proposed. One of the most famous models is refereed
to as ARCH (AutoRegressive Conditional Heteroskedasticity) model [145] and the sim-
plest version of the model, the so-called ARCH(1) model is given by

Xt+1 = Xt + Yt, P (Yt) = N (0, σt), σ
2
t+1 = α0 + α1X

2
t (28)

where we should keep in mind that Yt obeys a Gaussian, however the volatility is
not constant but is updated by (28).

The ARCH model is easily extended to the GARCH (Generalized ARCH)
model [146]. The update of the volatility in the simplest GARCH(1,1) is described
by σ2

t+1 = α0 + α1X
2
t + β1σ

2
t instead of (28).

6.4 Duration between price changes: first-passage process

In the previous subsections, our argument was restricted to the stochastic variables
of the price changes (returns) and most of them concern a key-word: Fat tails of
the distributions or deviation from a Gaussian. However, also the distribution of
time intervals can deliver useful information on the markets and it is worth while
to investigate these properties extensively [147–153] and if possible, to apply the
gained knowledge to financial engineering.

In fact, the Sony bank rate is one of the suitable examples. The Sony bank rate
is the rate for individual customers of the Sony bank [154] in their on-line foreign
exchange trading service via the internet. If the USD/JPY market rate changes
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Fig. 13 The time-dependence of the volatility σ2
t for setting α0 = 0.45, α1 = 0.55 (left).

The right panel shows the distribution of Yt for the GARCH(1,1) process with (α0, α1, β1) =
(0.4, 0.3, 0.3).

by greater or equal to 0.1 yen, the Sony bank USD/JPY exchange rate is updated
to the market rate. In this sense, the Sony bank rate can be regarded as a first-
passage processes [155–161]. In Fig. 14, we show the mechanism of generating the
Sony bank rate from the market rate (this process is sometimes referred to as a
first exit process [162]). As shown in the figure, the time difference between two
consecutive points in the Sony bank rate becomes longer than the time intervals
of the market rates. We also should notice that the first passage time fluctuates
even if the underlying stochastic process possesses a constant duration.

To qualify the system in terms of the duration, in following, let us suppose
that the difference between two consecutive points of the Sony bank rate change,
namely, the first-passage time τ follows the distribution with probability density
function PW (τ)[163,164]. Then, the customers observe the rate at time t (0 ≤ t ≤
τ) that should be measured from the point at which the rate previously changed.
In Fig. 14(right), we show the relation among these variables τ (= first-passage
time), t (= observation time) and s (= waiting time) in the time axis. The waiting

Fig. 14 An illustration of generating the filtered rate by the rate window with width 2ε from
the market rate. If the market rate changes by a quantity greater or equal to 0.1 yen, the
Sony bank USD/JPY exchange rate is updated to the market rate. The right panel shows the
relation of the points τ, t and s in time axis. The first-passage time τ is given by τ = ti+1 − ti.
The observation time is measured from the point ti.

time for the customers is naturally defined as s ≡ τ−t. Then, we should notice that
the distribution Ω(s) can be written in terms of the first-passage time distribution
(with density PW (τ)) and the observation time distribution (with density PO(t))
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of the customers as a convolution Ω(s) ∝
R∞
0 dτ

R τ
0 dtQ(s|τ, t)PO(t)PW (τ). In this

equation, the conditional probability density Q(s|τ, t) that the waiting time takes
the value s provided that the observation time and the first-passage time were
given as t and τ , respectively, is given by Q(s|τ, t) = δ(s − τ + t), where δ(·) is
Dirac’s delta function. Taking into account the normalization constant of Ω(s), we
have

Ω(s) =

R∞
0 dτPW (τ)

R τ
0 dt δ(s− τ + t)PO(t)

R∞
0 ds

R∞
0 dτPW (τ)

R τ
0 dt δ(s− τ + t)PO(t)

(29)

where t denotes the observation time for the customers. The result of the renewal-
reward theorem : w = 〈s〉 = E(τ2)/2E(τ) (see for example [165,166]) is recovered
by inserting a uniformly distributed observation time distribution PO(t) = 1 into
the above expression. Indeed, we have

w = 〈s〉 =

Z ∞

0
dssΩ(s) =

R∞
0 dss

R∞
s dτPW (τ)

R∞
0 ds

R∞
s dτPW (τ)

=
E(τ2)

2E(τ)
(30)

where we defined the n-th moment of the first-passage time E(τn) by E(τn) =
R∞
0 dssnPW (s). For a Weibull distribution: Pm,a(t) = (mtm−1/a) exp(−tm/a) which

is required from the empirical evidence for the Sony bank rate [167–169], we have

Ω(s) =
m e−sm/a

a1/mΓ
`

1
m

´ , w = a1/m Γ
`

2
m

´

Γ
`

1
m

´ (31)

We show the distribution Ω(s) with a = 1 and m = 0.59, 1 and 2 in the left panel
of Fig. 15.

Here we encounter the situation which is known as inspection paradox [164]. For
the Weibull distribution, the paradox occurs for m < mc = 1. Namely, for this
regime, we have 〈s〉 > 〈τ〉 (see Fig. 15). In general, it means that the average of
durations (first-passage times) is shorter than the average waiting time. This fact
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Fig. 15 The distribution of waiting time for a Weibull distributing Ω(s) with a = 1 and
m = 0.59, 1 and 2. The right panel shows average duration 〈τ〉 and average waiting time 〈s〉 as
a function of m for a Weibull duration distribution with a = 1. The inspection paradox occurs
for m < mc = 1.

is quite counter-intuitive because the customer checks the rate at a time between
arbitrary consecutive rate changes. This fact is intuitively understood as follows.
When the parameter m is smaller than mc, the bias of the duration is larger than
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that of the exponential distribution. As a result, the chance for customers to check
the rate within large intervals between consecutive price changes is more frequent
than the chance they check the rate within shorter intervals. Then, the average
waiting time can become longer than the average duration.

6.5 Microscopic reconstruction of prices

From statistical physics point of view, the price change should be explained from
the decision making of huge amount of teaders. Here we show the model pro-
posed by Kaizoji [170] as such an attempt. Recently, we modified the Ising model
approach by taking into account the cross-correlations in stocks [171].

As we saw, the return, which is defined as the difference between prices at
successive two time steps t and t+1 is given by (22). To reconstruct the return Yt

from the microscopic view point, we assume that each trader (i = 1, · · · , N) buys
or sells unit-volume at each time step t and write the total volumes of buying

and selling are explicitly given by ψ
(t)
+ and ψ

(t)
− , respectively. Then, the return

Yt is naturally defined by means of ψ
(t)
± as Yt = λ(ψ

(t)
+ − ψ

(t)
− ), where λ is a

positive constant. Namely, when the volume of buyers is greater than that of

sellers, ψ
(t)
+ > ψ

(t)
− , the return becomes positive Yt > 0 (the price increases from

(22)).
We should notice that the making decision of each trader (i = 1, · · · , N) is

obtained simply by an Ising spin:

S
(t)
i =



+1 (buy)
−1 (sell)

(32)

The return is also simplified as Yt = λ(ψ
(t)
+ − ψ

(t)
− ) = λ

PN
i=1 S

(t)
i ≡ mt where we

set λ = N−1 to make the return:

mt =
1

N

N
X

i=1

S
(t)
i (33)

satisfying |m(t)
t | ≤ 1. Thus, mk corresponds to the so-called magnetization in sta-

tistical physics, and the update rule of the price is written in terms of the magne-
tization mt.

We next introduce the energy function.

Et(S) = −Jt

N

X

ij

SiSj − h
(k)
t

X

i

σ
(t)
τ Si (34)

where the above first term induces human collective behaviour, namely, each agent
inclines to take the same decision as the others to decrease the total energy. The
effect of this first term on the minimization of total energy might be recognized as
the so-called Keynes’s beauty contest. It means that traders tend to be influenced by
the others’ decision makings, in particular, at the crisis. The second term appearing
in the right hand side of (34) represents the cross-correlation between the decision

of trader and market information σ
(t)
τ . Here we choose the ‘trends’ :

σ
(t)
τ =

(pt − pt−τ )

τ
(35)
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for such information. It should be noticed that the state vectors of the agents:
S = (S1, · · · , SN ) are determined so as to minimize the energy function (34) from
the above argument. For most of the cases, the solution should be unique. How-
ever, in realistic financial markets, the decisions by agents should be much more
‘diverse’. Thus, here we consider statistical ensemble of traders S and define the
distribution of the ensemble by P (S). Then, we look for the suitable distribution
which maximizes the so-called Shannon’s entropy H = −

P

S P (S) logP (S) under
two distinct constraints

P

S P (S) = 1,
P

S P (S)E(S) = E. After some algebra,
we immediately obtain the solution as Gibbs-Boltzmann distribution:

P (S) =
exp[−βE(S)]

P

S exp[−βE(S)]
(36)

where β stands for the inverse-temperature given by β = 1/T . The equation of
state at the equilibrium is obtained by m =

P

S(1/N)
P

i SiP (S), however, in
financial markets, it might be assumed that the system is not at the equilibrium.
To include the non-equilibrium property, we consider that the system described
macroscopically by the following update rule which is based on the equation of
state for m as

mt = tanh(Jtmt−1 + htσ
(t)
τ ). (37)

It should be noted that the magnetization at the equilibrium is obtained by setting
mt = mt−1 = m in the limit of t→ ∞.

In order to use the update rule (22) with Yt = mt and (37), the information
about parameters Jt, ht appearing in the right hand side of (37) is needed. Hence,
we should infer these parameters from the past data set in the financial market.
In machine learning framework, the parameters are determined by the gradient
descent

Jt+1 = Jt − η
∂E
∂Jt

, ht+1 = ht − η
∂E
∂ht

(38)

for the cost function:

E(Jt, ht) ≡
1

2

t
X

l=1

h

∆Zl − tanh
n

Jt∆Zl−1 + htσ
(t)
τ

oi

(39)

where η is a learning coefficient and we defined ∆Zl ≡ (1/M)
Pl

i=l−M+1(Zi+1−Zi)
for real (empirical) value of the price Zt. Namely, the cost function (39) is an error
measurement to evaluate how good the update rule of the return (37) is satisfied
for the empirically observed return ∆Zl during the past t-time steps. Learning
equations for the cost function (39) coupled with (37) and (22) determine the
price at the next step. We show the result of the prediction in Fig. 16. After
crush in Fig. 16, the parameters J, h converges to J → 1 and h → 0 which are
corresponding to the solution m = tanh(Jm) as a critical point of the second
order phase transition.

6.6 Summary

We briefly showed several examples of analysis for the fluctuation in space and
time of financial data sets. We found that the modeling of on-line trading sys-
tem by means of renewal process and its first-passage process is practically useful
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Fig. 16 The result of the prediction. The empirical data (true time-series) is picked-up from
EUR/JPY exchange rate from 27th April 2010 to 13th May 2010. We set τ = M = 100 and
η = 0.01.

and one can evaluate several macroscopic quantities such as ‘waiting time’ for the
customers. We also introduced an agent-based modeling of financial markets. We
have confirmed that Ising models, which have been used in the literature of statis-
tical physics, are actually effective even in the context of finance. To explain the
‘Stylized facts’ from the agent-based microscopic viewpoint might be addressed as
an important future direction.

7 Outlook

It is well-known that some of the standard assumptions and postulates of tradi-
tional economic theory have been:

1. An economy is an “equilibrium” system, where all the markets systematically
clear at each point of time; however the equilibrium may be disturbed period-
ically by exogenous shocks.

2. An “invisible hand” mechanism is at play, where all the selfish and greedy
individual agents yield a result that is beneficial to the society as a whole.

3. Agents (individuals, firms, etc.) behave “rationally” – optimise their utilities
under specific constraints and their choices satisfy some standard consistency
axioms.

4. The behaviour of all the agents together can be treated as corresponding to
that of an average or “representative agent”.

5. Financial markets are “efficient” such that all the relevant information con-
cerning an asset is reflected by the price of that asset.

However, the last financial crisis and economic slowdown has exposed several limi-
tations of traditional economic theories and models. It has become quite clear that
making minor modifications to the standard assumptions or models thereof may
not be enough; the whole framework needs to be systematically changed. Firstly, it
has been realised that the economy is a complex system and has a network struc-
ture, where often minute changes in a certain model’s assumptions - or changes
in the characteristics of a node or a link - can substantially change the emergent
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dynamics. This implies that the resulting dynamic interplay can generate unex-
pectedly large market fluctuations and the inherent risk in any resulting policy-
making, is greatly amplified. Secondly, the modelling of “representative agents” in
economics often neglects the effects of interaction between those agents. By focus-
ing mainly on “rational behaviour” (individual optimisation of utility or profit),
economics has lost the perception that “many is different” – the higher-level aggre-
gate behaviour can have distinct properties that cannot be understood purely on
the basis of the constituents at a lower hierarchical level. Built upon this extreme
form of reductionism, the established framework of e.g., the banking regulation,
has been exclusively micro-oriented and has neglected system-wide effects which
can be very important.

In this article, we have presented a few simple models and mechanisms based
on statistical mechanics, and shown how they can be adapted to studying socio-
economic systems. The knowledge from such models or other studies of self-
organised criticality (not discussed here) in the physical sciences, may help in
understanding how the structurally similar connections between micro units might
lead to similar or emergent collective behaviour in the social systems. We have also
discussed in this article that links in economic networks can be interpreted e.g.,
as relationships between creditors and debtors, or dependency among heteroge-
neous economic agents as nodes including financial institutions and firms. Once a
certain set of agents has deterioration in their financial states, it can potentially
propagate as a systemic risk to a considerable scale. It is crucial to understand
the large-scale structure of economic networks at nation-wide or globe-wide scales,
but such a study has been considered a formidable task so far. We have reviewed
the study focusing on banks-firms lending-borrowing credit network and on pro-
duction network of supplier and customers at a large-scale that covers essentially
all domestic banks and firms. There have also been a few other phenomenological
studies (which we could not discuss here due to space constraints) of particular
segments in the interbank market in the Econophysics literature. It is now nec-
essary to go beyond the first step of analogies, and relatively simple mechanical
models, e.g., (i) to examine the behavioural micro-foundations of how the agents
involved establish their connections in this financial ecosystem, (ii) to identify and
build a proper institutional framework for interactions (with rules and strategies)
in order to facilitate beneficial self-organisation, (iii) to understand the globally
well-knit, strongly correlated or interdependent socio-economic systems and their
resulting complex emergent dynamic behaviour.

It is quite interesting to review how neoclassical economics was influenced by
classical physics in earlier times, and now Econophysics has been influenced by
statistical physics (kinetic exchange models, Ising model, SOC models, scaling,
universality, renormalization, etc.). While statistical physics has been very instru-
mental in the current development of this field, both from a historical viewpoint
and otherwise, it should be noted that Econophysics does not just concern the ap-
plication of statistical physics. It has gained much from other disciplines as well.
The minority game or the Keynes’s beauty contest, for example, obviously has
an economic origin; the social networks were initiated by sociologists, the random
walk formulation of bond prices was formulated first by mathematicians, and so
on.

In this article, we have also tried to portray the fact that Econophysics is not
just about finance, by choosing many topics outside the realm of finance. Many
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of the early contributions in Econophysics were very much related to finance, and
the phrases “finance”, “financial markets”, or “speculation” appeared in the titles
of the first few books. However, it has constantly and successfully expanded over
time from just financial markets to other branches of economics. And probably, in
this respect we have seen only the tip of the iceberg!
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