CloudSim

Cloud Simulation Toolkit
Agenda

- Essentials to start with Cloudsim.
- Insight on Cloudsim modeled components.
- Insight on Cloudsim simulation process.
- Hands-on examples.
Introduction - Cloud Computing Service Stack
Cloud Infrastructure Challenges for researchers

- Cloud exhibit varying demands, supply patterns, system sizes and resources.
- Users have heterogeneous, dynamic and competing QoS requirements.
- Applications have varying performance, workload and dynamic application scaling requirements.
- due to third party ownership, no flexibility on configuration and cost.

re-producing reliable results and benchmarking is extremely difficult.
Cloudsim - a viable alternative

- Hasslefree extensible modeling and event based simulation of large scale cloud infrastructure with support of virtualization engine.
- Self contained platform for modeling:
 - Clouds,
 - Service brokers
 - Provisioning and allocation policies.
- Flexibility to switch between:
 - Space-shared
 - Time-shared allocation, at all the levels.
- Simulation of network connections among the simulated systems elements.
- Support for federated cloud environment.
Cloudsim - Essentials

- JDK 1.6 or above http://tinyurl.com/JNU-JAVA
- Eclipse 4.2 or above http://tinyurl.com/JNU-Eclipse
- Alternatively NetBeans https://netbeans.org/downloads
- Up & Running with cloudsim guide: https://goo.gl/TPL7Zh
Cloudsim-Directory structure

- cloudsim/ -- top level CloudSim directory
- docs/ -- CloudSim API Documentation
- examples/ -- CloudSim examples
- jars/ -- CloudSim jar archives
- sources/ -- CloudSim source code
Cloudsim - Layered Architecture

CloudSim core simulation engine

CloudSim architecture layers:
- User code
 - Simulation Specification
 - Cloud Scenario
 - User Requirements
 - Application Configuration

- Scheduling Policy
 - User or Data Center Broker

CloudSim components:
- User Interface Structures
 - VM Services
 - Cloudlet
 - Cloudlet Execution
 - VM Management
- Cloud Services
 - VM Provisioning
 - CPU Allocation
 - Memory Allocation
 - Storage Allocation
 - Bandwidth Allocation
- Cloud Resources
 - Events Handling
 - Sensor
 - Cloud Coordinator
 - Data Center
- Network
 - Network Topology
 - Message Delay Calculation
Cloudsim - Time/Space shared models

- - -

(a) VM-space, Task-space
(b) VM-space, Task-time
(c) VM-time, Task-space
(a) VM-time, Task-time
Cloudsim - Network latency matrix using BRITE

\[E_{ij} = \text{Delay from entity}_i \text{ to entity}_j \]

\[
\begin{bmatrix}
0 & 40 & 120 & 80 & 200 \\
40 & 0 & 60 & 100 & 100 \\
120 & 60 & 0 & 90 & 40 \\
80 & 100 & 90 & 0 & 70 \\
200 & 100 & 40 & 70 & 0 \\
\end{bmatrix}
\]
Cloudsim - Network latency behavior

[Diagram showing the process of sending, making delay, and receiving messages in a network topology.]

- Send message
- Make delay
- Receive message

Message sender
Network Topology
CloudSim

Creating a message
Send a message
Receiving a message
Forward the message

do/ send a message
do/ calculate network delay
do/ put message in receiver's queue

Initial state
State
Event
Final state
Components of Virtualized Infrastructure
Cloudsim - Component model classes

- CloudInformationService.java
- Datacenter.java, Host.java, Pe.java
- Vm.java, Cloudlet.java
- DatacenterBroker.java
- Storage.java, HarddriveStorage.java, SanStorage.java
Cloudsim - Major blocks/Modules

- org.cloudbus.cloudsim
- org.cloudbus.cloudsim.core
- org.cloudbus.cloudsim.core.predicates
- org.cloudbus.cloudsim.core.distributions
- org.cloudbus.cloudsim.core.lists
- org.cloudbus.cloudsim.core.network
- org.cloudbus.cloudsim.core.network.datacenter
- org.cloudbus.cloudsim.core.power
- org.cloudbus.cloudsim.core.power.lists
- org.cloudbus.cloudsim.core.power.models
- org.cloudbus.cloudsim.core.provisioners
- org.cloudbus.cloudsim.core.util
Cloudsim - key components

- Datacenter
- DataCenterCharacteristics
- Host
- DatacenterBroker
- RamProvisioner
- BwProvisioner
- Storage
- Vm
- VMAllocationpolicy
- VmScheduler
- Cloudlet
- CloudletScheduler
- CloudInformationService
- CloudSim
- CloudSimTags
- SimEvent
- SimEntity
- CloudsimShutdown
- FutureQueue
- DefferedQueue
- Predicate and associative classes.
Ok... so how exactly this system works?
Simulation flow for basic scenario
Cloudsim - Core simulation framework
Task execution Queue management

![Diagram showing task execution queue management]

DeferredQueue
- Event1 – t1
- Event2 – t1
- Event4 – t2
- Event5 – t3
- Event6 – t3

FutureQueue
- Event4 – t2
- Event5 – t3
- Event6 – t3
- Event3 – t4

Runtime
- runClockTick()
Cloudsim - General steps to follow

- Initiate the cloudsim simulation.
- create a datacenter.
- create a datacenter broker.
- create VMs/cloudlet add it to respective lists.
- submit vm and cloudlet list to broker.
- start simulation.
- stop simulation.
- print the end results.
To Work on Cloudsim only thing you require is to know

Computers cannot think for themselves or assume anything. They can do exactly what you tell them to do.

So think like a programmer and model your work in Cloudsim
Cloudsim - Quick look inside
Cloudsim - Q & A

- @anupinder
- anupindersingh@superwits.com

- Share your feedback at: http://tinyurl.com/CloudSimJNUDec16